大约有 851 项符合查询结果, 库内数据总量为 30,779 项。 (搜索耗时: 0.0052 秒)
Laya_社区(605) Laya2.0_文档(119) Laya3.0_文档(63) Laya2.0_api(24) laya_api(21) Laya3.0_api(13) Laya_示例(6)
...eated 2019-05-10 17:10:38.253489+0800 SwiftLayaNative[98971:4069811] 当前应用软件版本:1.0 2019-05-10 17:10:38.253591+0800 SwiftLayaNative[98971:4069811] 当前应用Local版本号码:1 2019-05-10 17:10:38.253705+0800 SwiftLayaNative[98971:4069811] AppVersion=1.0 2019-05-10 17:10:38.273953+...
来源: Laya_社区 发布时间: 20190510
... 在FB中新建项目之后配置FB的编译环境,环境配置后点击应用-运行报错,如图1所示: ![blob.png](img/1.png) (图1) **原因:** 报错是由于代码中引入原生Flash AS3的API和继承原生AS3的Sprite导致。LayaAir引擎支持Flash AS3语言的基...
来源: Laya2.0_文档 发布时间: 20210715
...Filter 是颜色滤镜。使用 ColorFilter 类可以将 4 x 5 矩阵转换应用于输入图像上的每个像素的 RGBA 颜色和 Alpha 值,以生成具有一组新的 RGBA 颜色和 Alpha 值的结果。该类允许饱和度更改、色相旋转、亮度转 Alpha 以及各种其他效果。您...
来源: Laya3.0_api 发布时间: 20231115
...位图中。下面我们创建一个Main.as入口类,并设置为默认应用程序(推荐用FlashBuilder),编写代码如下: ```java package { import laya.display.Sprite; import laya.display.Stage; import laya.filters.ColorFilter; import laya.resource.Texture; import laya.utils.Browser; ...
来源: Laya2.0_文档 发布时间: 20210715
...目录介绍三、使用支付宝小游戏开发工具3.1 申请小游戏应用3.2 安装小游戏开发工具3.3 登录支付宝开发者账号3.4 预览或真机调试3.5 上传与发布四、分包加载支付宝小游戏 一、概述 支付宝小游戏不需要用户进行下载,是点开即...
来源: Laya3.0_文档 发布时间: 20241014
...的钢笔工具就是来做这种矢量曲线的。 贝塞尔曲线是应用于二维图形应用程序的数学曲线。曲线的定义有四个点:起始点、终止点(也称锚点)以及两个相互分离的中间点。滑动两个中间点,贝塞尔曲线的形状会发生变化。 ...
来源: Laya2.0_文档 发布时间: 20210715
...e; animator.addControllerLayer(layer); layer.defaultWeight = 1.0; } ``` 2. 应用装扮效果 - 装扮应用可以在 onLoadCharacter 加载回调中进行, 也可以在 CmShowTool.loadGLTFDone 中回调返回前进行 ```typescript // 获取脸部模型渲染节点数组 var faceRenderableArray: ...
来源: Laya2.0_文档 发布时间: 20210715
...的钢笔工具就是来做这种矢量曲线的。 贝塞尔曲线是应用于二维图形应用程序的数学曲线。曲线的定义有四个点:起始点、终止点(也称锚点)以及两个相互分离的中间点。滑动两个中间点,贝塞尔曲线的形状会发生变化。 ...
来源: Laya2.0_文档 发布时间: 20210715
...localOffset?: Vector3): void Defined in laya/d3/physics/Rigidbody3D.ts:647 应用作用力。 Parameters force: Vector3 作用力。 Default value localOffset: Vector3 = null 偏移,如果为null则为中心点 Returns void applyForceXYZ applyForceXYZ(fx: number, fy: number, fz: number, localOffset?...
来源: Laya3.0_api 发布时间: 20231115
...的钢笔工具就是来做这种矢量曲线的。 贝塞尔曲线是应用于二维图形应用程序的数学曲线。曲线的定义有四个点:起始点、终止点(也称锚点)以及两个相互分离的中间点。滑动两个中间点,贝塞尔曲线的形状会发生变化。 ...
来源: Laya2.0_文档 发布时间: 20210714